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Abstract

In the Dasgupta–Heal–Solow–Stiglitz (DHSS) model of capital accumulation and resource depletion we show the

following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population

growth must be quasi-arithmetic and the path is a maximin or a classical utilitarian optimum. Conversely, if a path is

optimal according to maximin or classical utilitarianism (with constant elasticity of marginal utility) under quasi-

arithmetic population growth, then the (gross and net of population growth) savings rates converge asymptotically to

constants.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we revisit a question posed by Mitra [17]: What patterns of population growth are consistent
with the attainment of some well-known social objectives (i.e., maximin and classical utilitarianism) in the
presence of exhaustible resource constraints? Prior to Mitra’s investigation it was known—as shown by Solow
[22] and Stiglitz [23]—that non-decreasing per capita consumption is infeasible under exponential population
growth when exhaustible resources are essential inputs in production and there is no technological progress.
Mitra [17], however, established that non-decreasing per capita consumption is feasible under quasi-arithmetic
e front matter r 2006 Elsevier Inc. All rights reserved.
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population growth1 in a discrete time version of the Cobb–Douglas Dasgupta–Heal–Solow–Stiglitz (DHSS)
model of capital accumulation and resource depletion [5,22,23].

Mitra [17] analyzed this question without imposing a specific parametric structure on population growth,
while considering quasi-arithmetic growth in examples. In this paper we aim for explicit closed form solutions,
since we believe that this is essential for the applicability of the results. Hence, we concentrate on the case of
quasi-arithmetic population growth, leading to growth paths that are regular in the terminology of Groth et al.
[9]. To further facilitate such tractability, we consider the original continuous time version of the
Cobb–Douglas DHSS model. It is well-known that the Cobb–Douglas production function is of particular
interest in the context of the DHSS model since—in the case of no population growth and no technological
progress—it is the only CES specification that allows for non-decreasing per capita consumption without
making the resource inessential.

We illustrate in this paper the feasibility of paths with non-decreasing per capita consumption in spite of
population growth by presenting closed-form solutions. In contrast to Mitra [17], we also include the case of
population decline. This paper substantially extends Mitra’s analysis by showing the equivalence between

efficiency and constant (gross and net of population growth) savings rates, on the one hand, and quasi-arithmetic

population growth and the social objectives of maximin and classical (undiscounted) utilitarianism, on the other

hand. Both maximin and classical utilitarianism treat generations equally and fit many people’s view of an
intergenerationally equitable social objective much better than discounted utilitarianism. From this
perspective it is of interest to note that this paper highlights cases where positive discounting is not needed
to ensure the existence of a socially optimal choice, since both maximin and utilitarianism with zero
discounting give sensible and interesting results.

In a neglected contribution that is a precursor to the present paper, Hoel [15] provides an early analysis of
constant savings rates in the Cobb–Douglas DHSS model.2 He characterizes paths arising from constant
savings rates when there is no technological progress, but does not discuss the optimality of such paths and
does not consider population growth. Conversely, Solow [22] and Stiglitz [23] (in the case of maximin) and
Dixit [7, pp. 169–171] and Dasgupta and Heal [6, pp. 303–308] (in the case of classical utilitarianism) show
that optimal growth paths may exhibit constant savings rates in the Cobb–Douglas DHSS model, although
they (with the exception of Dixit) do not emphasize this property. Recently, paths with constant savings rates
in this particular model have attracted some attention [2,13,19]. This paper presents a complete characterization

of constant savings rate paths in a setting with population growth—but without technological progress—and

emphasizes their relationship to the social objectives of maximin and classical utilitarianism.

In the Cobb–Douglas DHSS model, the Hartwick rule—which there takes the form of prescribing that
resource rents be reinvested in reproducible capital—entails a constant savings rate equaling the constant
relative functional share of resource input. An efficient path that develops according to the Hartwick rule in a
setting where there is no population growth and no technological progress attains constant consumption and
is a maximin optimum. Moreover, since Hartwick’s original contribution [14], there has been much interest in
the converse result: whether a maximin objective leads to paths following the Hartwick rule, and thus having a
constant savings rate in this particular model [8,26,18,27,4]. This paper generalizes the literature on the

Hartwick rule and its converse, by considering also the case where population growth is non-zero and by including

also classical utilitarianism as an objective.3

Due to the Cobb–Douglas production function, the relative functional share of capital is constant. It turns
out to be a necessary condition for the existence of paths with constant savings rates that the gross of
population growth savings rate is smaller than the relative functional share of capital. This means that the
functional share of capital must not only cover the accumulation of per capita capital, but also the ‘‘drag’’ on
per capita capital accumulation caused by population growth. This paper thereby generalizes a well-known
1See Definition 3 of Section 2.2 for the definition of quasi-arithmetic population growth.
2Constant savings rate paths are also studied by Stiglitz [24] and Dixit [7, Chapter 7] in the case of exponential growth in technology and

population.
3Even though a path developing according to the Hartwick rule in the Cobb–Douglas DHSS model has a constant savings rate, we

refrain from referring to other constant savings rate paths as paths following a ‘‘generalized’’ Hartwick’s rule. The reason is that the term

‘‘generalized Hartwick rule’’ has already been given a different meaning by Dixit et al. [8], namely that the present value of net investments

is constant; see also [11,3,12].
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condition for the feasibility of positive constant consumption, shown by Solow [22] and Stiglitz [23] in the case of
no population growth and no technological progress.4

The paper is organized as follows. In Section 2 we introduce the model and present preliminary results. In
Section 3 we show that if an efficient path has constant (gross and net of population growth) savings rates,
then population growth is quasi-arithmetic and the path is a maximin or classical utilitarian optimum. In
Section 4 we then establish a converse result: if a feasible path is optimal according to maximin or classical
utilitarianism (with constant elasticity of marginal utility) under quasi-arithmetic population growth, then the
(gross and net of population growth) savings rates converge to constants asymptotically. In Section 5 we
consider quasi-arithmetic technological progress and show that the implications of this are similar but not
identical to quasi-arithmetic population decline. In Section 6 we end by offering concluding remarks.
2. The setting

2.1. The model

Consider the Cobb–Douglas version of the DHSS model:

Q ¼ AKaRbN1�a�b ¼ C þ I ,

where we denote by Q non-negative net production, by A positive state of technology, by K non-negative
capital, by R non-negative resource input, by N positive population, and by C non-negative consumption, and
where I :¼ _K and

a40; b40; aþ bo1.

The assumption that aþ bo1 means that labor inputs are productive. Most results hold also if aþ b ¼ 1. Let
the lower-case variables, q, c, k, r, i, refer to per capita values so that

q ¼ Akarb ¼ cþ i ¼ cþ
_N

N
k þ _k. (1)

For exogenously given absolutely continuous paths of the state of technology and population, fAðtÞg1t¼0 and
fNðtÞg1t¼0, and positive initial stocks of capital and resource, ðK0;S0Þb0, the path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is
feasible if

Nð0Þkð0Þ ¼ K0, ð2ÞZ 1
0

NðtÞrðtÞ dtpS0 ð3Þ

are satisfied, and (1) holds for almost every t40. We assume that fkðtÞg1t¼0 is absolutely continuous and that
fqðtÞg1t¼0, fcðtÞg

1
t¼0, and frðtÞg

1
t¼0 are piecewise continuous cf. [20, pp. 72–73]. Henceforth, a ‘‘path’’ will always

refer to a feasible path. A path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is interior if ðqðtÞ; cðtÞ; kðtÞ; rðtÞÞb0 for almost every t40.
Denote by nðtÞ :¼ _NðtÞ=NðtÞ the rate of population growth. For an interior path, denote by xðtÞ :¼ kðtÞ=qðtÞ

the capital-output ratio, and by zðtÞ :¼ nðtÞxðtÞ the ‘‘drag’’ on capital accumulation caused by population
growth. Then

aðtÞ:¼
iðtÞ

qðtÞ
,

bðtÞ:¼
_kðtÞ

qðtÞ
¼ aðtÞ � zðtÞ ð4Þ

are the gross of population growth and net of population growth savings rates, respectively (where the last
equality in (4) follows from (1)).
4Stiglitz [23] obtains the same result also for ‘‘steady state paths’’ in the case of exponential population growth and exponential

technological progress.
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2.2. Definitions

In Sections 3 and 4 we show the equivalence between efficiency and constant (gross and net of population
growth) savings rates, on the one hand, and quasi-arithmetic population growth and the social objectives of
maximin and classical utilitarianism, on the other hand. In this subsection we formally define these concepts.

Definition 1. The economy has constant gross of population growth savings rate if aðtÞ ¼ a�, a constant, for all
t40.

Definition 2. The economy has constant net of population growth savings rate if bðtÞ ¼ b�, a constant, for all
t40.

Definition 3. Population growth is quasi-arithmetic if NðtÞ ¼ Nð0Þð1þ mtÞj for all tX0, where m40 and j are
constants.

Definition 4. A path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is optimal under a maximin objective if inf tX0 cðtÞ40 and

inf
tX0

cðtÞX inf
tX0

c̄ðtÞ

for any path fq̄ðtÞ; c̄ðtÞ; k̄ðtÞ; r̄ðtÞg1t¼0.

Definition 5. A path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is optimal under a classical utilitarian objective with utility function
u if

lim sup
T!1

Z T

0

NðtÞuðc̄ðtÞÞ dt�

Z T

0

NðtÞuðcðtÞÞ dt

� �
p0

for any path fq̄ðtÞ; c̄ðtÞ; k̄ðtÞ; r̄ðtÞg1t¼0.

Definition 1 implies the savings rule _K ¼ a�Q, while Definition 2 corresponds to the savings rule
dðK=NÞ=dt ¼ b�Q=N. With a constant population, the gross and net of population growth savings rates
coincide. In this case, the assumption of a constant savings rate has a long tradition in the growth-theoretic
literature. Note in particular that, without population growth and with a constant savings rate, the model
described above coincides with a simple Solow–Swan model [21,25] if b ¼ 0. In the Cobb–Douglas version of
the DHSS model, Hoel [15] presented an early analysis of the assumption of a constant savings rate (which
does not necessarily equal b).

Definition 3 includes the cases where population grows (j40), is constant (j ¼ 0), and declines (jo0).
With a growing population, it follows from Definition 3 that population is a convex (concave) function of time
if j41 (0ojo1). In either case, population increases beyond all bounds, while the rate of population growth
is a hyperbolic function of time, approaching zero as time goes to infinity. Quasi-arithmetic population growth
as defined in Definition 3 may be a better approximation than exponential growth to the future development
of the world’s population, now that the global population growth rate is declining. In fact, global population
change since 1990 indicates that the absolute increase in population is also decreasing. This means that global
population is experiencing sub-arithmetic growth, suggesting that 0ojo1.

Definition 4 entails that a maximin optimum is non-trivial in the sense of maintaining a positive per capita
consumption level. When applying the classical utilitarian objective of Definition 5, we will assume constant
elasticity of marginal utility:

uðcÞ ¼ c1�Z=ð1� ZÞ,

where Z40, with Z ¼ 1 corresponding to the case where uðcÞ ¼ ln c.

2.3. Sufficient and necessary conditions for efficiency

A path is efficient if there is no path with at least as much consumption everywhere and larger consumption
on a subset of the time interval with positive measure. An interior path satisfies the Hotelling rule if the inverse
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of the marginal productivity of resource input

pðtÞ:¼
1

b
qðtÞ

rðtÞ

(5)

is absolutely continuous and, for almost every t40,

a
qðtÞ

kðtÞ
¼ �

_pðtÞ

pðtÞ
. (6)

The Hotelling rule ensures no profitable arbitrage of resource input, and implies that fqðtÞg1t¼0 and frðtÞg
1
t¼0 are

absolutely continuous. A path satisfies resource exhaustion if (3) is binding. A path satisfies the capital value

transversality condition if

lim
t!1

pðtÞNðtÞkðtÞ ¼ 0. (7)

The following results provide sufficient and necessary conditions for the efficiency of interior paths. The
sufficiency result builds on Malinvaud [16].

Lemma 6. Let fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 be an interior path. The path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is efficient if it satisfies

the Hotelling rule, resource exhaustion, and the capital transversality condition.

Proof. By (5) and the fact that the path satisfies the Hotelling rule, it follows that � _p=p ¼ aq=k ¼ aQ=K (i.e.,
the marginal product of capital) and 1=p ¼ bq=r ¼ bQ=R (i.e., the marginal product of resource input).
Hence, if Q̄ ¼ AK̄

a
R̄

b
N1�a�b, the concavity of the production function implies that

Qþ
_p

p
K �

1

p
RXQ̄þ

_p

p
K̄ �

1

p
R̄,

which can be rewritten (using Q ¼ C þ _K and Q̄ ¼ C̄ þ _̄K) as

pðC̄ � CÞp�
d

dt
ðpðK̄ � KÞÞ þ R̄� R.

Let fq̄ðtÞ; c̄ðtÞ; k̄ðtÞ; r̄ðtÞg1t¼0 be any path. Then, for all T40, (by integrating and using Kð0Þ ¼ K̄ð0Þ ¼ K0,
C ¼ Nc, C̄ ¼ Nc̄, K ¼ Nk, K̄ ¼ Nk̄, R ¼ Nr, and R̄ ¼ Nr̄)Z T

0

pðtÞNðtÞðc̄ðtÞ � cðtÞÞ dtppðTÞNðTÞðkðTÞ � k̄ðTÞÞ þ

Z T

0

NðtÞðr̄ðtÞ � rðtÞÞ dt: ð8Þ

It follows that fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is efficient since it satisfies resource exhaustion and (7), while fr̄ðtÞg1t¼0
satisfies (3) and pNk̄ is non-negative. &

Lemma 7. Let fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 be an interior path. If the path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is efficient, then it

satisfies the Hotelling rule and resource exhaustion.

Proof. Suppose
R1
0

NðtÞrðtÞ dtoS0. This obviously contradicts the efficiency of fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0. Hence,
the path satisfies resource exhaustion, and it also solves the so-called minimum resource use problem, i.e., for
any path fq̄ðtÞ; cðtÞ; k̄ðtÞ; r̄ðtÞg1t¼0 we have

R1
0 NðtÞr̄ðtÞ dtX

R1
0 NðtÞrðtÞ dt. The Hamiltonian of the minimum

resource use problem reads

Hðc; k; r; t; lÞ ¼ �Nrþ lðAkarb � c� nðtÞkÞ.

The problem has an interior solution fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 with fkðtÞg1t¼0 being absolutely continuous and
frðtÞg1t¼0 and fcðtÞg1t¼0 being piecewise continuous. Hence, among the necessary conditions we have that
flðtÞg1t¼0 is absolutely continuous and

qH

qr
¼ 0 and

qH

qk
¼ �_l,

from which the Hotelling rule follows by setting lðtÞ ¼ pðtÞNðtÞ. &
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2.4. Sufficient conditions for optimality

An interior path satisfies the Ramsey rule if fcðtÞg1t¼0 is absolutely continuous and, for almost every t40,

Z
_cðtÞ

cðtÞ
¼ a

qðtÞ

kðtÞ
, (9)

recalling our assumption that the elasticity of marginal utility is constant. The Ramsey rule ensures no welfare
enhancing arbitrage of consumption under classical utilitarianism.

The following result provides sufficient conditions for the optimality of interior paths.

Lemma 8. Let fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 be an interior path that satisfies the Hotelling rule, resource exhaustion, and

the capital transversality condition. If fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 has constant per capita consumption, then it is the

unique maximin optimum. If fqðtÞ; cðtÞ; kðtÞ, rðtÞg1t¼0 satisfies the Ramsey rule, then it is the unique classical

utilitarian optimum.

Proof. Maximin optimum: Let fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 be an interior path satisfying the Hotelling rule, resource
exhaustion, and the capital transversality condition. By Lemma 6, fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is efficient. If the path
has constant consumption, then inf tX0 cðtÞ40 since the path is interior, and inf tX0 cðtÞXinf tX0 c̄ðtÞ for any
path fq̄ðtÞ; c̄ðtÞ; k̄ðtÞ; r̄ðtÞg1t¼0 since the path is efficient.

Classical utilitarian optimum: Let fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 be an interior path satisfying the Hotelling rule,
resource exhaustion, the capital transversality condition, and the Ramsey rule. Then

Z
_cðtÞ

cðtÞ
¼ �

_pðtÞ

pðtÞ

for almost every t40, and we obtain

cðtÞ�Z ¼ l0pðtÞ

for all tX0 by setting l0 ¼ cð0Þ�Z=pð0Þ. Hence, with uðcÞ ¼ c1�Z=ð1� ZÞ and Z40 (Z ¼ 1 corresponding to
uðcÞ ¼ ln c), uðc̄ðtÞÞ � uðcðtÞÞpl0pðtÞðc̄ðtÞ � cðtÞÞ for all tX0, and any fc̄ðtÞg1t¼0. It now follows from the proof of
Lemma 6 that

lim sup
T!1

Z T

0

NðtÞðuðc̄ðtÞÞ � uðcðtÞÞ dt

� �
pl0 lim sup

T!1

Z T

0

pðtÞNðtÞðc̄ðtÞ � cðtÞÞ dt

� �
p0

for any path fq̄ðtÞ; c̄ðtÞ; k̄ðtÞ; r̄ðtÞg1t¼0.
Uniqueness: Follows from the strict concavity of the production function w.r.t. K and R. I.e., the inequality

in (8) is strict if fq̄ðtÞ; c̄ðtÞ; k̄ðtÞ; r̄ðtÞg1t¼0 differs from fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 on a subset of ½0;T � with positive
measure. &

3. Sufficiency of constant savings rates

In this section we explore the properties of efficient paths with constant savings rates in the case of a
stationary technology (setting AðtÞ ¼ 1 for all t40). We establish the following two theorems.

Theorem 9. There exists an interior and efficient path with constant gross of population savings rate, a, and a

constant net of population savings rate, b, if and only if a4a and population growth is quasi-arithmetic with

m ¼ s½ða� aÞbKa�1
0 S

b
0Nð0Þ1�a�b�

1
1�b, ð10Þ

j ¼
a� b

s
, ð11Þ

where

s ¼
ð1� a� bÞbþ ab

1� b
. (12)

Theorem 10. If an interior and efficient path has constant gross of population savings rate, a, and a constant net

of population savings rate, b, then the path is optimal under a maximin objective if b ¼ b and optimal under a
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classical utilitarian objective with constant elasticity of marginal utility given by

Z ¼
1� b
b� b

(13)

if b4b.

It will turn out to be useful to rearrange (12) as follows:

ð1� bÞðb� sÞ ¼ aðb� bÞ. (14)

To prove Theorems 9 and 10, we first report a proposition.

Proposition 11. For an interior path satisfying the Hotelling rule, the following holds:
(a)
 The time derivative of the capital-output ratio, x, exists almost everywhere and equals

_xðtÞ ¼
ð1� a� bÞbðtÞ þ ab

1� b
. (15)
(b)
 If the path has a constant net of population growth savings rate, b, then the capital-output ratio is an affine

function of time

xðtÞ ¼ xð0Þ þ st ¼ xð0Þð1þ mtÞ, (16)

where s is given by (12) and

m ¼
s

xð0Þ
¼ s

qð0Þ

kð0Þ
¼ skð0Þa�1rð0Þb. (17)
(c)
 If the path has constant gross of population growth savings rate, a, and constant net of population growth

savings rate, b, then

(i) the path has quasi-arithmetic population growth with j given by (11),
(ii) per capita output, consumption, capital stock and resource input are given by
qðtÞ ¼ qð0Þð1þ mtÞ
b
s�1, (18)

cðtÞ ¼ ð1� aÞqð0Þð1þ mtÞ
b
s�1, (19)

kðtÞ ¼
K0

Nð0Þ
ð1þ mtÞ

b
s, (20)

rðtÞ ¼ rð0Þð1þ mtÞ�
a�b
s �1, (21)

Proof of Proposition 11. Part (a): Since the path satisfies the Hotelling rule, fqðtÞg1t¼0 and frðtÞg1t¼0 are
absolutely continuous. Feasibility (Eq. (1)) implies

_q

q
¼ a

_k

k
þ b

_r

r
. (22)

The Hotelling rule (Eq. (6)) implies

a
q

k
¼
_q

q
�
_r

r
. (23)

By eliminating _r=r from (22) and (23) and rearranging, we obtain

k

q

_k

k
�
_q

q

 !
¼

ð1� a� bÞ
_k

q
þ ab

1� b
.
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Since, by the definition of x,

_x ¼
d

dt

k

q

� �
¼

k

q

_k

k
�
_q

q

 !
,

the result follows by applying (4).
Part (b): This follows from Part (a) through integration.
Part (c): Since zðtÞ ¼ nðtÞxðtÞ, it follows from (4) that

_NðtÞ

NðtÞ
¼ nðtÞ ¼

zðtÞ

xðtÞ
¼

a� b

xðtÞ
. (24)

Hence,

NðtÞ ¼ Nð0Þð1þ mtÞ
a�b
s (25)

is obtained by solving (24) and applying (16), thus establishing (i).
Combining qðtÞ ¼ kðtÞ=xðtÞ, _kðtÞ ¼ bqðtÞ, (15), and (12) yields

_qðtÞ

qðtÞ
¼

b� s
xðtÞ

. (26)

By solving (26) and applying (16), we obtain (18). Furthermore, (19) follows from (18) and
cðtÞ ¼ qðtÞ � iðtÞ ¼ ð1� aÞqðtÞ, while (20) follows from (2), (16), (18), and kðtÞ ¼ xðtÞqðtÞ. Note that it follows
from (12) that qðtÞ and cðtÞ are increasing and kðtÞ is a convex function of time if and only if b4b. Finally,
since qðtÞ ¼ kðtÞarðtÞb and (by applying (14)) ðb=s� 1� ab=sÞ=b ¼ �ða� bÞ=s� 1, we obtain (21). &

By applying (14) to (18) and (19) we see that per capita output and consumption are growing when b4b.
One can then intuitively regard the savings rate a as the sum of b to compensate for the value of exhaustible
resource depletion, plus a� b to compensate for population growth, plus b� b to give growth in per capita
output.

We are now in a position to prove Theorems 9 and 10.

Proof of Theorem 9 (Necessity). Assume the existence of a path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 that is interior and
efficient with a constant gross of population savings rate, a, and a constant net of population savings rate, b.
Then, by Lemma 7, the path satisfies the Hotelling rule (so, by Proposition 11, the path is partially
characterized by Eqs. (25), (18)–(21)) and resource exhaustion.

Resource exhaustion combined with (25) and (21) yield

Nð0Þrð0Þ

Z 1
0

ð1þ mtÞ�
a�a
s �1 dt ¼ S0. (27)

This entails a4a and implies

rð0Þ ¼
mða� aÞS0

sNð0Þ
, (28)

while it follows from (2) and (17) that

qð0Þ ¼
mK0

sNð0Þ
. (29)

With a4a, the parameter m as given by (10) is determined by eliminating rð0Þ from (17) and (28). In turn, this
value of m inserted in (29) determines qð0Þ, and inserted in (28) it determines rð0Þ, giving closed form solutions
for (18)–(21).
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Sufficiency: Assume that a4a, and let population growth be quasi-arithmetic with m and j given by
(10)–(12). It has already been demonstrated that, with a4a and such quasi-arithmetic population growth,
there exists an interior path characterized by Eqs. (25), (18)–(21), and (28)–(29). This path satisfies resource
exhaustion and has a constant gross of population savings rate, a, and a constant net of population savings
rate, b. It remains to show that the path is efficient. Since

pðtÞ ¼
1

b
qðtÞ

rðtÞ

¼
rð0Þ

bqð0Þ
ð1þ mtÞ�

a
s,

it follows from (18) and (20) that the Hotelling rule is satisfied and from (25) and (20) that the capital value
transversality condition is satisfied. Hence, by Lemma 6 the constructed path is efficient. &

Proof of Theorem 10. By Theorem 9, the premise is not vacuous and any path satisfying the premise is
characterized by a4a, (10)–(12), (25), (18)–(21), and (28)–(29), and satisfies the Hotelling rule, resource
exhaustion, and the capital transversality condition. We have two cases to consider.

Case 1: b ¼ b. Since b ¼ s ¼ b, it follows from (19) that per capita consumption is constant. Since the path
satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition, Lemma 8 implies that
it is optimal under a maximin objective.

Case 2: b4b. Since b4s, it follows from (19) that per capita consumption increases:

_cðtÞ

cðtÞ
¼

b� s
xðtÞ

.

By (9) the Ramsey rule holds if Z satisfies

a
ZxðtÞ

¼
b� s
xðtÞ

.

By eliminating s by means of (14), we obtain that Z is given by (13). Since the path satisfies the Hotelling rule,
resource exhaustion, and the capital transversality condition, Lemma 8 implies that it is optimal under a
classical utilitarian objective with constant elasticity of marginal utility given by (13). &

In the special case of a constant population ðj ¼ 0Þ, the results of Theorems 9 and 10 have been reported
elsewhere. Hoel [15] shows the result of Theorem 9 when j ¼ 0, or equivalently, a ¼ b. Solow [22, Sections 9–
10] and Stiglitz [23, Propositions 5a and b] show that a ¼ b ¼ b corresponds to a maximin optimum, thereby
establishing the maximin part of Theorem 10 when j ¼ 0. The utilitarian part of Theorem 10 with zero
population growth is implied by the analysis of Dasgupta and Heal [6, pp. 303–308]. Also, with j ¼ 0, the
formulae in Proposition 11(c)(ii) are the same as the constant-technology versions of formulae in Pezzey [19,
p. 476], allowing for differences in notation.

The analysis of this section (see (18) and (20)) implies that per capita output is an increasing function of time
and per capita capital is a convex function of time if b4b, corresponding to classical utilitarianism, while per
capita output is constant and per capita capital is a linear function if b ¼ b, corresponding to maximin. In
either case, the capital-output ratio is a linear function of time (cf. (16)), and the growth rates of per capita
output and capital approach zero as time goes to infinity.

The path described in Proposition 11(c) can be used to illuminate the meaning of the concept of a ‘‘genuine
savings indicator’’ cf. [10] in the presence of population growth. ‘‘Genuine savings’’ must be zero along the
constant per capita consumption path that is optimal under maximin. However, the value of changes in per
capita stocks, dðK=NÞ=dtþ ð1=pÞdðS=NÞ=dt, equals

_kðtÞ �
1

pðtÞ
rðtÞ �

nðtÞ
pðtÞ

Z 1
t

rðtÞ dt ¼ 1� 1�
nðtÞs

mða� aÞ

� �
bqðtÞ ¼ �

nðtÞs
mða� aÞ

bqðtÞ

and is negative along the maximin path with positive quasi-arithmetic population growth, as there is no
compensation for the spread of the remaining resource stock on more people. This illustrates the qualitative
result obtained in Proposition 6 of Asheim [1], with the following intuitive interpretation: When the rate of
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population growth is decreasing, it is not necessary for the current generation to compensate fully for current
population growth in order to ensure sustainable development.

Theorem 9 shows that the existence of an interior and efficient path with constant savings rates does not
only imply that population growth is quasi-arithmetic, but also that the parameters of the exogenous
population path satisfy (10)–(12). What happens if population growth is quasi-arithmetic, but without
satisfying the strong parameter restrictions that (10)–(12) entail? This motivates the analysis of the next
section, where we consider optimal paths that have quasi-arithmetic population growth satisfying a weak
parameter restriction.

4. Necessity of constant savings rates

In this section we turn to a converse result that takes as its premise that paths have quasi-arithmetic
population growth and are optimal under a maximin or classical utilitarian objective. We establish the
following two theorems in the case of a stationary technology (setting AðtÞ ¼ 1 for all t40). Theorem 12
presents conditions under which there exist paths having quasi-arithmetic population growth and being
optimal under a maximin or classical utilitarian objective, thereby establishing that the premise is not vacuous.
Theorem 13 shows that any such path has gross and net of population growth savings rates that converge
asymptotically to constants.

Theorem 12. Let population growth be quasi-arithmetic with

�1pjo
a
b
� 1. (30)

There exists a unique path that is optimal under a maximin objective. There exists a unique path that is optimal

under a classical utilitarian objective if the constant elasticity of marginal utility satisfies

Z4
ð1� bÞ þ ð1� a� bÞj

a� bð1þ jÞ
. (31)

Theorem 13. If a path has quasi-arithmetic population growth satisfying (30) and is optimal under a maximin

objective or under a classical utilitarian objective with constant elasticity of marginal utility satisfying (31), then

the path is interior and efficient, and the gross of population growth and net of population growth savings rates

converge asymptotically to the constants

a� ¼ bð1þ jÞ þ
ð1� bÞ þ ð1� a� bÞj

Z
, ð32Þ

b� ¼ bþ
1� b
Z

, ð33Þ

where Z ¼ 1 corresponds to the maximin objective, and Zo1 is the constant elasticity of marginal utility under

the classical utilitarian objective.

In the case of rapid population decline (i.e., jo� 1), the resource is not essential: the initial stock of capital
can give rise to positive and non-decreasing consumption without resource inputs. Hence, since our purpose is
to study savings behavior under exhaustible resource constraints, we choose to exclude this case.

To prove Theorems 12 and 13, we first report two propositions, in which we consider interior paths where
the rate of per capita consumption growth is given by

_cðtÞ

cðtÞ
¼

a
ZxðtÞ

. (34)

Eq. (34) includes the case of constant consumption by setting Z ¼ 1.

Proposition 14. Consider an interior path that satisfies the Hotelling rule and has quasi-arithmetic

population growth with ja0. If the rate of per capita consumption growth given by (34), then the gross of

population growth savings rate, aðtÞ, and the ‘‘drag’’ on capital accumulation caused by population growth, zðtÞ,
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are governed by

_aðtÞ ¼
að1� aðtÞÞnðtÞ
ð1� bÞzðtÞ

aðtÞ � zðtÞ � bþ
1� b
Z

� �� �
, ð35Þ

_zðtÞ ¼
ð1� a� bÞnðtÞ
ð1� bÞ

aðtÞ � 1þ
1� b

ð1� a� bÞj

� �
zðtÞ þ

ab
1� a� b

� �
. ð36Þ

Proof. First, note that it follows from _kðtÞ ¼ bðtÞqðtÞ ¼ bðtÞkðtÞ=xðtÞ that

_kðtÞ

kðtÞ
¼

bðtÞ

xðtÞ
. (37)

Since 1� aðtÞ ¼ cðtÞ=qðtÞ ¼ cðtÞxðtÞ=kðtÞ, it follows that

_aðtÞ

1� aðtÞ
¼ �

_cðtÞ

cðtÞ
�
_xðtÞ

xðtÞ
þ
_kðtÞ

kðtÞ

¼
a

ð1� bÞxðtÞ
bðtÞ � bþ

1� b
Z

� �� �
,

where the last equation follows from (34), (15), and (37). Since bðtÞ ¼ aðtÞ � zðtÞ and zðtÞ ¼ nðtÞxðtÞ, we obtain
(35) if ja0.

With quasi-arithmetic population growth, we have that nðtÞ ¼ jm=ð1þ mtÞ and

_nðtÞ
nðtÞ
¼ �

nðtÞ
j

(38)

if ja0. Since zðtÞ ¼ nðtÞxðtÞ it follows from (15) and (38) that

_zðtÞ ¼ nðtÞ _xðtÞ þ
_nðtÞ
nðtÞ

xðtÞ

� �
¼ nðtÞ

ð1� a� bÞbðtÞ þ ab
1� b

�
nðtÞxðtÞ

j

� �

if ja0. Since bðtÞ ¼ aðtÞ � zðtÞ and zðtÞ ¼ nðtÞxðtÞ, we obtain (36). &

Proposition 15. Let population growth be quasi-arithmetic with ja0 satisfying (30) and assume that Z ¼ 1 or Z
satisfies (31). There exists a path satisfying resource exhaustion and Eqs. (34)–(36), and having the property that

the gross of population growth and net of population growth savings rates converge asymptotically to the

constants given by (32) and (33). This path is interior and satisfies the Hotelling rule and the capital value

transversality condition.

The proof of Proposition 15 is given in Appendix A. We are now in a position to prove Theorems 12 and 13.

Proof of Theorem 12. Maximin. Case 1: j ¼ 0. Consider the path characterized by (10)–(12), (25), (18)–(21),
(28)–(29), and a ¼ b ¼ b. Since 0 ¼ joa=b� 1 and a ¼ b, so that a4a, it follows from Theorem 9 that this
zero population growth path exists. Furthermore, it is an interior path that satisfies the Hotelling rule,
resource exhaustion, and the capital transversality condition, and has constant per capita consumption. By
Lemma 8, it is the unique maximin optimum.

Case 2: ja0. The path established in Proposition 15 with Z ¼ 1 is an interior path that satisfies the
Hotelling rule, resource exhaustion, and the capital transversality condition, and has constant per capita
consumption. By Lemma 8, it is the unique maximin optimum.

Classical utilitarianism. Case 1: j ¼ 0. Consider the path characterized by (10)–(12), (25), (18)–(21),
(28)–(29), and a ¼ b ¼ bþ ð1� bÞ=Z. Since 0 ¼ joa=b� 1, a ¼ bþ ð1� bÞ=Z and Z4ð1� bÞ=ða� bÞ, so
that a4a, it follows from Theorem 9 that this zero population growth path exists. Furthermore, it is an
interior path that satisfies the Hotelling rule, resource exhaustion, the capital transversality condition, and the
Ramsey rule. By Lemma 8, it is the unique classical utilitarian optimum.

Case 2: ja0. The path established in Proposition 15 with Z satisfying (31) is an interior path that satisfies
the Hotelling rule, resource exhaustion, the capital transversality condition, and the Ramsey rule. By Lemma
8, it is the unique classical utilitarian optimum. &
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Proof of Theorem 13. By Theorem 12, there exists a unique optimal path, which is interior and (since it
satisfies the Hotelling rule, resource exhaustion, and the capital transversality condition) efficient. By
Proposition 15 and the proof of Theorem 12, the gross of population growth and net of population growth
savings rates along this path converge asymptotically to the constants given by (32) and (33). &

5. Quasi-arithmetic technological progress

As shown by Pezzey [19], there exist constant savings rate paths also in the case where technological
progress is quasi-arithmetic, while population is constant, provided that the quasi-arithmetic technological
progress satisfies parameter restrictions. We include this case
�
 to provide a link between this paper’s main results and Pezzey’s [19] analysis,

�
 to demonstrate that such paths are maximin or classical utilitarian, and

�
 to point out that quasi-arithmetic technological progress does not correspond to quasi-arithmetic

population decline.

Definition 16. Technological progress is quasi-arithmetic if AðtÞ ¼ Að0Þð1þ mtÞy for all tX0, where m40 and y
are constants.

The analysis of Groth et al. [9, Section 3] indicates that quasi-arithmetic technical progress may be just as
plausible as exponential technological progress in the long run.

We establish the following result in the case of a constant population (setting NðtÞ ¼ 1 for all t40). In this
case, the gross and net of population growth savings rates coincide; therefore we denote by s the constant
savings rate (where s ¼ a ¼ b). Also, since total and per capita values coincide, it follows that lower case
variables also correspond to total net production, total consumption, total capital, and total resource input.

Theorem 17. There exists an interior and efficient path with a constant savings rate, s, if a4s and technological

progress is quasi-arithmetic with m and y satisfying

ð1� bþ yÞm ¼ ðð1� a� bÞsþ abÞ½ða� sÞbAð0ÞKa�1
0 S

b
0 �

1
1�b. (39)

The path is optimal under a maximin objective if s ¼ s and optimal under a classical utilitarian objective with

constant elasticity of marginal utility given by

Z ¼
a

s� s
(40)

if s4s, where

s ¼
ð1� a� bÞsþ ab

1� bþ y
. (41)

Proof. For the first part of the theorem, assume that a4s, and let technological progress be quasi-arithmetic
with m and y satisfying (39). With a4s and such quasi-arithmetic technological progress, there exists a path
characterized by

qðtÞ ¼ qð0Þð1þ mtÞ
s
s�1, ð42Þ

cðtÞ ¼ ð1� sÞqð0Þð1þ mtÞ
s
s�1, ð43Þ

kðtÞ ¼ K0ð1þ mtÞ
s
s, ð44Þ

rðtÞ ¼ rð0Þð1þ mtÞ�
a�s
s �1, ð45Þ

qð0Þ ¼
mK0

s
, ð46Þ

rð0Þ ¼
mða� sÞS0

s
, ð47Þ
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where s is given by (41). To show this, take (42) as given. Then, (42) and cðtÞ ¼ qðtÞ � _kðtÞ ¼ ð1� sÞqðtÞ imply
(43). By letting the capital-output ratio xðtÞ ¼ kðtÞ=qðtÞ be given by

xðtÞ ¼ xð0Þ þ st ¼ xð0Þð1þ mtÞ,

so that

m ¼
s

xð0Þ
¼ s

qð0Þ

K0
¼ sAð0ÞKa�1

0 rð0Þb, (48)

we obtain (44) and (46). Finally, (45) follows from qðtÞ ¼ AðtÞkðtÞarðtÞb by applying (41), while (47) follows by,
in addition, imposing resource exhaustion. By eliminating rð0Þ from (47) and (48), it follows that the path
exists if a4s and the parameters m and y satisfy (39).

The path is clearly interior. It remains to show that the path is efficient. Since

pðtÞ ¼
1

b
qðtÞ

rðtÞ

¼
rð0Þ

bqð0Þ
ð1þ mtÞ�

a
s,

it follows from (42) and (44) that the Hotelling rule is satisfied and from (44) that the capital value
transversality condition is satisfied. Since, by construction, the path satisfies resource exhaustion, Lemma 6
implies that it is efficient.

For the second part of the theorem, we have two cases to consider.
Case 1: s ¼ s. It follows from (43) that per capita consumption is constant. Since the path satisfies the

Hotelling rule, resource exhaustion, and the capital transversality condition, Lemma 8 implies that it is
optimal under a maximin objective.

Case 2: s4s. It follows from (43) that per capita consumption increases:

_cðtÞ

cðtÞ
¼

s� s
xðtÞ

.

By (9) the Ramsey rule holds if Z satisfies

a
ZxðtÞ

¼
s� s
xðtÞ

,

which implies (40). Since the path satisfies the Hotelling rule, resource exhaustion, and the capital
transversality condition, Lemma 8 implies that it is optimal under a classical utilitarian objective with constant
elasticity of marginal utility given by (40). &

The paths that Pezzey [19] considers satisfy the sufficient conditions of Theorem 17; this follows from
straightforward but tedious calculations on the basis of his Eqs. (3)–(6) as well as the output expression on p.
476. Hence, it follows from Theorem 17 that Pezzey’s paths are classical utilitarian in the case with increasing
consumption, an observation not made by Pezzey [19].5 Also Hoel [15] combines a constant savings rate with
technological progress. But since he considers exponential technological progress, he obtains paths with
different properties.

It follows from Eqs. (42)–(47) that the path fqðtÞ; cðtÞ; kðtÞ; rðtÞg1t¼0 is as given by (18)–(21) and (28)–(29),
except for the change in the definition of s (compare (41) with (12)).

By (41), s is increasing in s, with s ¼ ð1� bÞ=ð1� bþ yÞ if s ¼ b. Hence, it follows from the proof of
Theorem 17 that non-decreasing consumption is feasible even if less than all resource rents are reinvested (i.e.,
sob), provided that there is quasi-arithmetic technological progress, since with y40 we may have that
b4sXs. The conditions sXs and (39) determine combinations of a constant savings rate and quasi-arithmetic
technological progress that ensure non-decreasing consumption.

If y ¼ 0, then the conditions a4s and sXs reduce to the well-known condition shown by Solow [21] and
Stiglitz [23] for the Cobb–Douglas DHSS model in the case with no population growth and no technological
5Instead, Pezzey [19] shows optimality under discounted utilitarianism with a less concave utility function and a positive and decreasing

discount rate. Since the discount rate is a hyperbolic function of absolute time, such a social objective is time-consistent, but not time-

invariant.
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progress, namely a4b. However, if y40, then a4s and sXs are compatible with aob since we may have that
b4sXs. Hence, non-decreasing consumption may be feasible even if aob.

The observations of the two previous paragraphs hold also in the case of a stationary technology and quasi-
arithmetic population decline: (1) Non-decreasing per capita consumption may be feasible even if the gross of
population growth savings rate a is smaller than b. (2) Non-decreasing per capita consumption may be feasible
even if aob. However, by comparing the analyses of Sections 3 and 5 (in particular, observe that expressions
(10)–(12) are different from expression (39)), it follows that the situation with a constant population and
quasi-arithmetic technological progress is not a special case of the situation with a stationary technology and
quasi-arithmetic population decline, or vice versa. Even though in the former situation net production can be
expressed as a function of capital and resource input in efficiency units—corresponding in the latter situation
to per capita net production being a function of per capita capital and per capital resource input—these two
formulations do not lead to an identical expression for capital accumulation.
6. Concluding remarks

To highlight the findings of the present paper we will contrast it with the results obtained by Mitra [17]. He
considers the same model, in discrete time, with a non-renewable natural resource and a Cobb–Douglas
technology. However, he does not a priori specify any functional form for the population growth. He derives
necessary and sufficient conditions for the existence of maximin and classical utilitarian optima. To illustrate,
Mitra [17] employs quasi-arithmetic population growth and derives restrictions on the corresponding
parameters satisfying these necessary and sufficient conditions. With this functional form for the population
growth, his conditions coincide with those derived here: in the case of maximin, he states the conditions a4b
(cf. condition (3.5a)) and joða=bÞ � 1 (stated in his Example 3.1); in the case of classical utilitarianism (with a
constant elasticity of marginal utility), he states the conditions a4b (cf. condition (4.1a)), Z4ð1� bÞ=ða� bÞ
(cf. condition (4.1b)), and

jo
a� b�

1� b
Z

bþ
1� a� b

Z

(stated in his Example 4.1). These conditions can be seen to be reformulations of our inequalities (30) and (31)
in the case where population growth is constrained to be non-negative ðjX0Þ.

Our contribution goes beyond that of Mitra [17]: in a setting which includes not only population growth,
but also population decline, we have
�
 presented a complete characterization of paths with constant (gross and net of population growth) savings

rates under population growth, and derived closed form solutions for such paths;

�
 shown the equivalence between efficiency and constant savings rates, on the one hand, and quasi-arithmetic

population growth and the social objectives of maximin and classical utilitarianism, on the other hand;

�
 generalized the literature on the Hartwick rule and its converse, by considering also the case where

population growth is non-zero and by including also classical utilitarianism as an objective.
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Appendix A. Proof of Proposition 15

Let z� ¼ a� � b� ¼ bjþ ð1� a� bÞj=Z, where a� and b� are given by (32) and (33). Rewrite equations (41)
and (42) as follows:

_aðtÞ ¼ nðtÞf ðaðtÞ; zðtÞÞ,

_zðtÞ ¼ nðtÞgðaðtÞ; zðtÞÞ.

Then ða�; z�Þ is the (unique) solution to f ða; zÞ ¼ gða; zÞ ¼ 0. For ða; zÞ such that gða; zÞa0, define

hða; zÞ ¼
f ða; zÞ

gða; zÞ
.

By L’Hôpital’s rule, lima!a�hða; z�Þ exists. Consider the differential equation

da

dz
¼ hða; zÞ.

Fix ða0; z0Þ ¼ ða�; z�Þ. Solve the differential equation to find a function âðzÞ passing through ða�; z�Þ. The
function â is uniquely determined, and it defines the stable manifold in ða; zÞ space for ao1 and z40 if j40,
and ao1 and zo0 if jo0. This stable manifold is invariant with respect to time. A phase diagram analysis is
therefore warranted. If the pair ðað0Þ; zð0ÞÞ of initial values is chosen on the manifold, convergence to ða�; z�Þ
occurs. On the other hand, if the pair ðað0Þ; zð0ÞÞ is chosen above or below the manifold, then ðaðtÞ; zðtÞ
diverges. See Fig. 1.

Since the converging path is interior and satisfies the Hotelling rule and the capital transversality condition,
it remains to be shown that the pair of initial values can be chosen on the stable manifold such that exact
resource exhaustion takes place. For given K0 and Nð0Þ, there exists S�0 such that (10)–(12) are satisfied when
aðtÞ ¼ a� and bðtÞ ¼ b� for all t. If S0 ¼ S�0, then the path stays at ða�; z�Þ and satisfies resource exhaustion by
choosing að0Þ ¼ a� and zð0Þ ¼ z�. Refer to this solution as the steady state path, and denote it by
fq�ðtÞ; c�ðtÞ; k�ðtÞ; r�ðtÞg1t¼0.
Fig. 1. Phase diagrams for jo0 and j40.
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If S0aS�0, then a converging path satisfies resource exhaustion only if the pair ðað0Þ; zð0ÞÞ of initial values
does not equal ða�; z�Þ. In terms of the original variables of the model we can write

að0Þ ¼ 1�
cð0Þ

qð0Þ
¼ 1�

cð0Þ

kð0Þarð0Þb
,

zð0Þ ¼ nð0Þxð0Þ ¼ nð0Þ
kð0Þ

qð0Þ
¼ nð0Þ

kð0Þ1�a

rð0Þb
,

implying that

cð0Þ ¼ nð0Þkð0Þ
1� að0Þ

zð0Þ
, ðA:1Þ

rð0Þ ¼ nð0Þkð0Þ1�a
1

zð0Þ

� �1=b

. ðA:2Þ

Furthermore, (34) implies that

_cðtÞ

cðtÞ
¼

anðtÞ
Z

1

zðtÞ

� �
, (A.3)

while it follows from (22), (15), and (37) that

_rðtÞ

rðtÞ
¼ �

anðtÞ
1� b

1� aðtÞ

zðtÞ
þ 1

� �
. (A.4)

Finally, (35), (36), (A.2), and (A.4) imply that total resource extraction is a continuous function of zð0Þ.
Consider first the cases where j40 and S0aS�0.
Let S04S�0. Choose að0Þoa� and zð0Þoz� on the stable manifold leading to ða�; z�Þ (i.e., að0Þ ¼ âðzð0ÞÞ). By

(A.1), initial consumption can be made arbitrarily large by choosing zð0Þ sufficiently small. Since, by (A.3),
consumption grows at least as fast as in the steady state, total resource extraction can be made arbitrarily large
by choosing zð0Þ sufficiently small. Because total resource extraction is a continuous function of zð0Þ, it follows
that there exists a pair ðað0Þ; zð0ÞÞ on the stable manifold, with að0Þoa� and zð0Þoz�, such that exact
exhaustion of S0 takes place.

The case where j40 and S0oS�0 is analogous, since, by (A.1), cð0Þ can be made arbitrarily small by
choosing zð0Þ sufficiently large.

Consider next the cases where jo0 and S0aS�0. In these cases, zo0.
Let S04S�0. Since Z ¼ 1 or, by (30) and (31), Z41, it follows that bþ ð1� bÞ=Zo1. Hence, the stable

manifold has the property that

lim
jzj!0

âðzÞpbþ
1� b
Z

o1; (A.5)

see the left panel of Fig. 1. Choose að0Þoa� and jzð0Þjojz�j on the stable manifold leading to ða�; z�Þ (i.e.,
að0Þ ¼ âðzð0ÞÞ). By (A.1) and (A.5), initial consumption can be made arbitrarily large by choosing jzð0Þj
sufficiently small. Hence, the argument above when j40 goes through.

The case where jo0 and S0oS�0 is analogous, provided that we can show that

lim
jzj!1

1� âðzÞ

jzj
¼ 0, (A.6)

since then, by (A.1), cð0Þ can be made arbitrarily small by choosing jzð0Þj sufficiently large. This can be shown
under �1pjo0 (implying by (30) and (31) that Z41) by transforming (35) and (36) to

d

dt
ln
1� aðtÞ

zðtÞ

� �
¼ �

_aðtÞ

1� aðtÞ
�
_zðtÞ

zðtÞ
¼ nðtÞ

1� aðtÞ

zðtÞ
� 1�

a
Z

� �
1

zðtÞ
þ 1þ

1

j

� �� �
, ðA:7Þ

d

dt
ln

1

zðtÞ

� �
¼ �

_zðtÞ

ztÞ
¼ nðtÞ

1� a� b
1� b

1� aðtÞ

zðtÞ
� ð1� aÞ

1

zðtÞ
þ

1� a� b
1� b

þ
1

j

� �� �
. ðA:8Þ
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For suppose that (A.6) does not hold, i.e., lim supjzj!1ð1� âðzÞÞ=jzjX�40. Then, using (A.7) and (A.8), it can
be shown that there exists a sufficiently large jzð0Þj such that the path with ðâðzð0Þ; zð0ÞÞÞ as initial values
satisfies

1� aðtÞ

jzðtÞj
4

1� a�

jz�j
and

d

dt

1� aðtÞ

jzðtÞj

� �
40

for all t beyond some TX0. This contradicts that, by definition of the function â, any path with ðâðzð0Þ; zð0ÞÞÞ
as initial values converges to ða�; z�Þ.
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